
Sparse Local Embeddings for Extreme Multi-label
Classification

Kush Bhatia†, Himanshu Jain§, Purushottam Kar‡∗ , Manik Varma†, and Prateek Jain†
†Microsoft Research, India

§Indian Institute of Technology Delhi, India
‡Indian Institute of Technology Kanpur, India

{t-kushb,prajain,manik}@microsoft.com
himanshu.j689@gmail.com, purushot@cse.iitk.ac.in

Abstract

The objective in extreme multi-label learning is to train a classifier that can auto-
matically tag a novel data point with the most relevant subset of labels from an
extremely large label set. Embedding based approaches attempt to make training
and prediction tractable by assuming that the training label matrix is low-rank and
reducing the effective number of labels by projecting the high dimensional label
vectors onto a low dimensional linear subspace. Still, leading embedding ap-
proaches have been unable to deliver high prediction accuracies, or scale to large
problems as the low rank assumption is violated in most real world applications.
In this paper we develop the SLEEC classifier to address both limitations. The
main technical contribution in SLEEC is a formulation for learning a small ensem-
ble of local distance preserving embeddings which can accurately predict infre-
quently occurring (tail) labels. This allows SLEEC to break free of the traditional
low-rank assumption and boost classification accuracy by learning embeddings
which preserve pairwise distances between only the nearest label vectors.
We conducted extensive experiments on several real-world, as well as bench-
mark data sets and compared our method against state-of-the-art methods for ex-
treme multi-label classification. Experiments reveal that SLEEC can make signif-
icantly more accurate predictions then the state-of-the-art methods including both
embedding-based (by as much as 35%) as well as tree-based (by as much as 6%)
methods. SLEEC can also scale efficiently to data sets with a million labels which
are beyond the pale of leading embedding methods.

1 Introduction

In this paper we develop SLEEC (Sparse Local Embeddings for Extreme Classification), an extreme
multi-label classifier that can make significantly more accurate and faster predictions, as well as
scale to larger problems, as compared to state-of-the-art embedding based approaches.

eXtreme Multi-label Learning (XML) addresses the problem of learning a classifier that can auto-
matically tag a data point with the most relevant subset of labels from a large label set. For instance,
there are more than a million labels (categories) on Wikipedia and one might wish to build a classi-
fier that annotates a new article or web page with the subset of most relevant Wikipedia categories.
It should be emphasized that multi-label learning is distinct from multi-class classification where the
aim is to predict a single mutually exclusive label.

Challenges: XML is a hard problem that involves learning with hundreds of thousands, or even mil-
lions, of labels, features and training points. Although, some of these problems can be ameliorated

∗This work was done while P.K. was a postdoctoral researcher at Microsoft Research India.

1

using a label hierarchy, such hierarchies are unavailable in many applications [1, 2]. In this setting,
an obvious baseline is thus provided by the 1-vs-All technique which seeks to learn an an indepen-
dent classifier per label. As expected, this technique is infeasible due to the prohibitive training and
prediction costs given the large number of labels.

Embedding-based approaches: A natural way of overcoming the above problem is to reduce the
effective number of labels. Embedding based approaches try to do so by projecting label vectors onto
a low dimensional space, based on an assumption that the label matrix is low-rank. More specifically,
given a set of n training points {(xi,yi)ni=1} with d-dimensional feature vectors xi ∈ Rd and L-
dimensional label vectors yi ∈ {0, 1}L, state-of-the-art embedding approaches project the label
vectors onto a lower L̂-dimensional linear subspace as zi = Uyi. Regressors are then trained to
predict zi as Vxi. Labels for a novel point x are predicted by post-processing y = U†Vx where U†
is a decompression matrix which lifts the embedded label vectors back to the original label space.

Embedding methods mainly differ in the choice of their compression and decompression techniques
such as compressed sensing [3], Bloom filters [4], SVD [5], landmark labels [6, 7], output codes [8],
etc. The state-of-the-art LEML algorithm [9] directly optimizes for U†, V using a regularized
least squares objective. Embedding approaches have many advantages including simplicity, ease of
implementation, strong theoretical foundations, the ability to handle label correlations, as well as
adapt to online and incremental scenarios. Consequently, embeddings have proved to be the most
popular approach for tackling XML problems [6, 7, 10, 4, 11, 3, 12, 9, 5, 13, 8, 14].

Embedding approaches also have limitations – they are slow at training and prediction even for small
embedding dimensions L̂. For instance, on WikiLSHTC [15, 16], a Wikipedia based challenge data
set, LEML with L̂ = 500 takes ∼ 12 hours to train even with early termination whereas prediction
takes nearly 300 milliseconds per test point. In fact, for text applications with d̂-sparse feature
vectors such as WikiLSHTC (where d̂ = 42 � L̂ = 500), LEML’s prediction time Ω(L̂(d̂ + L))

can be an order of magnitude more than even 1-vs-All’s prediction time O(d̂L).

More importantly, the critical assumption made by embedding methods, that the training label matrix
is low-rank, is violated in almost all real world applications. Figure 1(a) plots the approximation
error in the label matrix as L̂ is varied on the WikiLSHTC data set. As is clear, even with a 500-
dimensional subspace the label matrix still has 90% approximation error. This happens primarily
due to the presence of hundreds of thousands of “tail” labels (Figure 1(b)) which occur in at most 5
data points each and, hence, cannot be well approximated by any linear low dimensional basis.

The SLEEC approach: Our algorithm SLEEC extends embedding methods in multiple ways to ad-
dress these limitations. First, instead of globally projecting onto a linear low-rank subspace, SLEEC
learns embeddings zi which non-linearly capture label correlations by preserving the pairwise dis-
tances between only the closest (rather than all) label vectors, i.e. d(zi, zj) ≈ d(yi,yj) only if
i ∈ kNN(j) where d is a distance metric. Regressors V are trained to predict zi = Vxi. We pro-
pose a novel formulation for learning such embeddings that can be formally shown to consistently
preserve nearest neighbours in the label space. We build an efficient pipeline for training these
embeddings which can be orders of magnitude faster than state-of-the-art embedding methods.

During prediction, rather than using a decompression matrix, SLEEC uses a k-nearest neighbour
(kNN) classifier in the embedding space, thus leveraging the fact that nearest neighbours have been
preserved during training. Thus, for a novel point x, the predicted label vector is obtained using
y =

∑
i:Vxi∈kNN(Vx) yi. The use of a kNN classifier is well motivated as kNN outperforms dis-

criminative methods in acutely low training data regimes [17] as is the case with tail labels.

The superiority of SLEEC’s proposed embeddings over traditional low-rank embeddings can be
seen by looking at Figure 1, which shows that the relative approximation error in learning SLEEC’s
embeddings is significantly smaller as compared to the low-rank approximation error. Moreover, we
also find that SLEEC can improve the prediction accuracy of state-of-the-art embedding methods
by as much as 35% (absolute) on the challenging WikiLSHTC data set. SLEEC also significantly
outperforms methods such as WSABIE [13] which also use kNN classification in the embedding
space but learn their embeddings using the traditional low-rank assumption.

Clustering based speedup: However, kNN classifiers are known to be slow at prediction. SLEEC
therefore clusters the training data into C clusters, learning a separate embedding per cluster and
performing kNN classification within the test point’s cluster alone. This allows SLEEC to be more

2

100 200 300 400 500
0

0.5

1

Approximation Rank

A
pp

ro
xi

m
at

io
n

E
rr

or

Global SVD
Local SVD
SLEEC NN Obj

0 1 2 3 4
x 10

5

1e0

1e1

1e2

1e3

1e4

1e5

Label ID

 A
ct

iv
e

D
oc

um
en

ts

2 4 6 8 10

75

80

85

90

Number of Clusters

P
re

ci
si

on
@

1

Wiki10

SLEEC
LocalLEML

(a) (b) (c)
Figure 1: (a) error ‖Y − YL̂‖

2
F /‖Y ‖2F in approximating the label matrix Y . Global SVD denotes the error

incurred by computing the rank L̂ SVD of Y . Local SVD computes rank L̂ SVD of Y within each cluster.
SLEEC NN objective denotes SLEEC’s objective function. Global SVD incurs 90% error and the error is
decreasing at most linearly as well. (b) shows the number of documents in which each label is present for the
WikiLSHTC data set. There are about 300K labels which are present in < 5 documents lending it a ‘heavy
tailed’ distribution. (c) shows Precision@1 accuracy of SLEEC and localLEML on the Wiki-10 data set as we
vary the number of clusters.

than two orders of magnitude faster at prediction than LEML and other embedding methods on the
WikiLSHTC data. In fact, SLEEC also scales well to the Ads1M data set involving a million labels
which is beyond the pale of leading embedding methods. Moreover, the clustering trick does not
significantly benefit other state-of-the-art methods (see Figure 1(c), thus indicating that SLEEC’s
embeddings are key to its performance boost.

Since clustering can be unstable in large dimensions, SLEEC compensates by learning a small en-
semble where each individual learner is generated by a different random clustering. This was empir-
ically found to help tackle instabilities of clustering and significantly boost prediction accuracy with
only linear increases in training and prediction time. For instance, on WikiLSHTC, SLEEC’s pre-
diction accuracy was 55% with an 8 millisecond prediction time whereas LEML could only manage
20% accuracy while taking 300 milliseconds for prediction per test point.

Tree-based approaches: Recently, tree based methods [1, 15, 2] have also become popular for
XML as they enjoy significant accuracy gains over the existing embedding methods. For instance,
FastXML [15] can achieve a prediction accuracy of 49% on WikiLSHTC using a 50 tree ensemble.
However, using SLEEC, we are now able to extend embedding methods to outperform tree ensem-
bles, achieving 49.8% with 2 learners and 55% with 10. Thus, SLEEC obtains the best of both
worlds – achieving the highest prediction accuracies across all methods on even the most challeng-
ing data sets, as well as retaining all the benefits of embeddings and eschewing the disadvantages of
large tree ensembles such as large model size and lack of theoretical understanding.

2 Method
Let D = {(x1,y1) . . . (xn,yn)} be the given training data set, xi ∈ X ⊆ Rd be the input feature
vector, yi ∈ Y ⊆ {0, 1}L be the corresponding label vector, and yij = 1 iff the j-th label is turned
on for xi. LetX = [x1, . . . ,xn] be the data matrix and Y = [y1, . . . ,yn] be the label matrix. Given
D, the goal is to learn a multi-label classifier f : Rd → {0, 1}L that accurately predicts the label
vector for a given test point. Recall that in XML settings, L is very large and is of the same order as
n and d, ruling out several standard approaches such as 1-vs-All.

We now present our algorithm SLEEC which is designed primarily to scale efficiently for large L.
Our algorithm is an embedding-style algorithm, i.e., during training we map the label vectors yi to
L̂-dimensional vectors zi ∈ RL̂ and learn a set of regressors V ∈ RL̂×d s.t. zi ≈ V xi,∀i. During
the test phase, for an unseen point x, we first compute its embedding V x and then perform kNN
over the set [V x1, V x2, . . . , V xn]. To scale our algorithm, we perform a clustering of all the training
points and apply the above mentioned procedures in each of the cluster separately. Below, we first
discuss our method to compute the embeddings zis and the regressors V . Section 2.2 then discusses
our approach for scaling the method to large data sets.

2.1 Learning Embeddings
As mentioned earlier, our approach is motivated by the fact that a typical real-world data set tends
to have a large number of tail labels that ensure that the label matrix Y cannot be well-approximated
using a low-dimensional linear subspace (see Figure 1). However, Y can still be accurately modeled

3

Algorithm 1 SLEEC: Train Algorithm

Require: D = {(x1, y1) . . . (xn, yn)}, embedding
dimensionality: L̂, no. of neighbors: n̄, no. of
clusters: C, regularization parameter: λ, µ, L1
smoothing parameter ρ

1: Partition X into Q1, .., QC using k-means
2: for each partition Qj do
3: Form Ω using n̄ nearest neighbors of each label

vector yi ∈ Qj

4: [U Σ]← SVP(PΩ(Y jY j
T

), L̂)

5: Zj ← UΣ
1
2

6: V j ← ADMM(Xj , Zj , λ, µ, ρ)
7: Zj = V jXj

8: end for
9: Output: {(Q1, V 1, Z1), . . . , (QC , V C , ZC}

Algorithm 2 SLEEC: Test Algorithm

Require: Test point: x, no. of NN: n̄, no. of desired
labels: p

1: Qτ : partition closest to x
2: z← V τx
3: Nz ← n̄ nearest neighbors of z in Zτ
4: Px ← empirical label dist. for points ∈ Nz
5: ypred ← Topp(Px)

Sub-routine 3 SLEEC: SVP

Require: Observations: G, index set: Ω, dimension-
ality: L̂

1: M1 := 0, η = 1
2: repeat
3: M̂ ←M + η(G− PΩ(M))

4: [U Σ]← Top-EigenDecomp(M̂, L̂)
5: Σii ← max(0,Σii),∀i
6: M ← U · Σ · UT
7: until Convergence
8: Output: U , Σ

Sub-routine 4 SLEEC: ADMM

Require: Data Matrix : X , Embeddings : Z, Regular-
ization Parameter : λ, µ, Smoothing Parameter : ρ

1: β := 0, α := 0
2: repeat
3: Q← (Z + ρ(α− β))X>

4: V ← Q(XX>(1 + ρ) + λI)−1

5: α← (V X + β)
6: αi = sign(αi) ·max(0, |αi| − µ

ρ
), ∀i

7: β ← β + V X − alpha
8: until Convergence
9: Output: V

using a low-dimensional non-linear manifold. That is, instead of preserving distances (or inner
products) of a given label vector to all the training points, we attempt to preserve the distance to
only a few nearest neighbors. That is, we wish to find a L̂-dimensional embedding matrix Z =

[z1, . . . , zn] ∈ RL̂×n which minimizes the following objective:

min
Z∈RL̂×n

‖PΩ(Y TY)− PΩ(ZTZ)‖2F + λ‖Z‖1, (1)

where the index set Ω denotes the set of neighbors that we wish to preserve, i.e., (i, j) ∈ Ω iff
j ∈ Ni. Ni denotes a set of nearest neighbors of i. We selectNi = arg maxS,|S|≤α·n

∑
j∈S(yTi yj),

which is the set of α · n points with the largest inner products with yi. |N | is always chosen large
enough so that distances (inner products) to a few far away points are also preserved while optimiz-
ing for our objective function. This prohibits non-neighboring points from entering the immediate
neighborhood of any given point. PΩ : Rn×n → Rn×n is defined as:

(PΩ(Y TY))ij =

{
〈yi,yj〉 , if (i, j) ∈ Ω,

0, otherwise.
(2)

Also, we add L1 regularization, ‖Z‖1 =
∑
i ‖zi‖1, to the objective function to obtain sparse embed-

dings. Sparse embeddings have three key advantages: a) they reduce prediction time, b) reduce the
size of the model, and c) avoid overfitting. Now, given the embeddings Z = [z1, . . . , zn] ∈ RL̂×n,
we wish to learn a multi-regression model to predict the embeddings Z using the input features.
That is, we require that Z ≈ V X where V ∈ RL̂×d. Combining the two formulations and adding
an L2-regularization for V , we get:

min
V ∈RL̂×d

‖PΩ(Y TY)− PΩ(XTV TV X)‖2F + λ‖V ‖2F + µ‖V X‖1. (3)

Note that the above problem formulation is somewhat similar to a few existing methods for non-
linear dimensionality reduction that also seek to preserve distances to a few near neighbors [18, 19].
However, in contrast to our approach, these methods do not have a direct out of sample generaliza-
tion, do not scale well to large-scale data sets, and lack rigorous generalization error bounds.

Optimization: We first note that optimizing (3) is a significant challenge as the objective function is
non-convex as well as non-differentiable. Furthermore, our goal is to perform optimization for data

4

sets where L, n, d � 100, 000. To this end, we divide the optimization into two phases. We first
learn embeddings Z = [z1, . . . , zn] and then learn regressors V in the second stage. That is, Z is
obtained by directly solving (1) but without the L1 penalty term:

min
Z,Z∈RL̂×n

‖PΩ(Y TY)− PΩ(ZTZ)‖2F ≡ min
M�0,

rank(M)≤L̂

‖PΩ(Y TY)− PΩ(M)‖2F , (4)

where M = ZTZ. Next, V is obtained by solving the following problem:

min
V ∈RL̂×d

‖Z − V X‖2F + λ‖V ‖2F + µ‖V X‖1. (5)

Note that the Z matrix obtained using (4) need not be sparse. However, we store and use V X as our
embeddings, so that sparsity is still maintained.

Optimizing (4): Note that even the simplified problem (4) is an instance of the popular low-rank
matrix completion problem and is known to be NP-hard in general. The main challenge arises
due to the non-convex rank constraint on M . However, using the Singular Value Projection (SVP)
method [20], a popular matrix completion method, we can guarantee convergence to a local minima.

SVP is a simple projected gradient descent method where the projection is onto the set of low-rank
matrices. That is, the t-th step update for SVP is given by:

Mt+1 = PL̂(Mt + ηPΩ(Y TY −Mt)), (6)

where Mt is the t-th step iterate, η > 0 is the step-size, and PL̂(M) is the projection of M onto
the set of rank-L̂ positive semi-definite definite (PSD) matrices. Note that while the set of rank-
L̂ PSD matrices is non-convex, we can still project onto this set efficiently using the eigenvalue
decomposition of M . That is, if M = UMΛMU

T
M be the eigenvalue decomposition of M . Then,

PL̂(M) = UM (1 : r) · ΛM (1 : r) · UM (1 : r)T ,

where r = min(L̂, L̂+
M) and L̂+

M is the number of positive eigenvalues of M . ΛM (1 : r) denotes
the top-r eigenvalues of M and UM (1 : r) denotes the corresponding eigenvectors.

While the above update restricts the rank of all intermediate iterates Mt to be at most L̂, computing
rank-L̂ eigenvalue decomposition can still be fairly expensive for large n. However, by using special
structure in the update (6), one can significantly reduce eigenvalue decomposition’s computation
complexity as well. In general, the eigenvalue decomposition can be computed in time O(L̂ζ)
where ζ is the time complexity of computing a matrix-vector product. Now, for SVP update (6),
matrix has special structure of M̂ = Mt + ηPΩ(Y TY −Mt). Hence ζ = O(nL̂ + nn̄) where
n̄ = |Ω|/n2 is the average number of neighbors preserved by SLEEC. Hence, the per-iteration time
complexity reduces to O(nL̂2 + nL̂n̄) which is linear in n, assuming n̄ is nearly constant.

Optimizing (5): (5) contains an L1 term which makes the problem non-smooth. Moreover, as the L1

term involves both V and X , we cannot directly apply the standard prox-function based algorithms.
Instead, we use the ADMM method to optimize (5). See Sub-routine 4 for the updates and [21] for
a detailed derivation of the algorithm.

Generalization Error Analysis: Let P be a fixed (but unknown) distribution over X ×Y . Let each
training point (xi,yi) ∈ D be sampled i.i.d. from P . Then, the goal of our non-linear embedding
method (3) is to learn an embedding matrix A = V TV that preserves nearest neighbors (in terms
of label distance/intersection) of any (x,y) ∼ P . The above requirements can be formulated as the
following stochastic optimization problem:

min
A�0

rank(A)≤k

L(A) = E
(x,y),(x̃,ỹ)∼P

`(A; (x,y), (x̃, ỹ)), (7)

where the loss function `(A; (x,y), (x̃, ỹ)) = g(〈ỹ,y〉)(〈ỹ,y〉 − x̃TAx)2, and g(〈ỹ,y〉) =
I [〈ỹ,y〉 ≥ τ], where I [·] is the indicator function. Hence, a loss is incurred only if y and ỹ have
a large inner product. For an appropriate selection of the neighborhood selection operator Ω, (3)
indeed minimizes a regularized empirical estimate of the loss function (7), i.e., it is a regularized
ERM w.r.t. (7).

5

We now show that the optimal solution Â to (3) indeed minimizes the loss (7) upto an additive
approximation error. The existing techniques for analyzing excess risk in stochastic optimization
require the empirical loss function to be decomposable over the training set, and as such do not
apply to (3) which contains loss-terms with two training points. Still, using techniques from the
AUC maximization literature [22], we can provide interesting excess risk bounds for Problem (7).

Theorem 1. With probability at least 1− δ over the sampling of the datasetD, the solution Â to the
optimization problem (3) satisfies

L(Â) ≤ inf
A∗∈A

{
L(A∗) +

E-Risk(n)︷ ︸︸ ︷
C
(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

}
,

where Â is the minimizer of (3), r = L̄
λ and A :=

{
A ∈ Rd×d : A � 0, rank(A) ≤ L̂

}
.

See Appendix A for a proof of the result. Note that the generalization error bound is independent
of both d and L, which is critical for extreme multi-label classification problems with large d, L. In
fact, the error bound is only dependent on L̄ � L, which is the average number of positive labels
per data point. Moreover, our bound also provides a way to compute best regularization parameter
λ that minimizes the error bound. However, in practice, we set λ to be a fixed constant.

Theorem 1 only preserves the population neighbors of a test point. Theorem 7, given in Appendix A,
extends Theorem 1 to ensure that the neighbors in the training set are also preserved. We would also
like to stress that our excess risk bound is universal and hence holds even if Â does not minimize
(3), i.e., L(Â) ≤ L(A∗) + E-Risk(n) + (L(Â)−L((̂A∗)), where E-Risk(n) is given in Theorem 1.

2.2 Scaling to Large-scale Data sets

For large-scale data sets, one might require the embedding dimension L̂ to be fairly large (say a few
hundreds) which might make computing the updates (6) infeasible. Hence, to scale to such large
data sets, SLEEC clusters the given datapoints into smaller local region. Several text-based data sets
indeed reveal that there exist small local regions in the feature-space where the number of points as
well as the number of labels is reasonably small. Hence, we can train our embedding method over
such local regions without significantly sacrificing overall accuracy.

We would like to stress that despite clustering datapoints in homogeneous regions, the label matrix of
any given cluster is still not close to low-rank. Hence, applying a state-of-the-art linear embedding
method, such as LEML, to each cluster is still significantly less accurate when compared to our
method (see Figure 1). Naturally, one can cluster the data set into an extremely large number of
regions, so that eventually the label matrix is low-rank in each cluster. However, increasing the
number of clusters beyond a certain limit might decrease accuracy as the error incurred during the
cluster assignment phase itself might nullify the gain in accuracy due to better embeddings. Figure 1
illustrates this phenomenon where increasing the number of clusters beyond a certain limit in fact
decreases accuracy of LEML.

Algorithm 1 provides a pseudo-code of our training algorithm. We first cluster the datapoints into
C partitions. Then, for each partition we learn a set of embeddings using Sub-routine 3 and then
compute the regression parameters V τ , 1 ≤ τ ≤ C using Sub-routine 4. For a given test point x,
we first find out the appropriate cluster τ . Then, we find the embedding z = V τx. The label vector
is then predicted using k-NN in the embedding space. See Algorithm 2 for more details.

Owing to the curse-of-dimensionality, clustering turns out to be quite unstable for data sets with
large d and in many cases leads to some drop in prediction accuracy. To safeguard against such
instability, we use an ensemble of models generated using different sets of clusters. We use different
initialization points in our clustering procedure to obtain different sets of clusters. Our empirical
results demonstrate that using such ensembles leads to significant increase in accuracy of SLEEC
(see Figure 2) and also leads to stable solutions with small variance (see Table 4).

3 Experiments

Experiments were carried out on some of the largest XML benchmark data sets demonstrating that
SLEEC could achieve significantly higher prediction accuracies as compared to the state-of-the-art.
It is also demonstrated that SLEEC could be faster at training and prediction than leading embedding
techniques such as LEML.

6

0 5 10
30

40

50

60

Model Size (GB)

P
re

ci
si

on
@

1

WikiLSHTC [L= 325K, d = 1.61M, n = 1.77M]

SLEEC
FastXML
LocalLEML−Ens

0 5 10 15
30

40

50

60

Number of Learners

P
re

ci
si

on
@

1

WikiLSHTC [L= 325K, d = 1.61M, n = 1.77M]

SLEEC
FastXML
LocalLEML−ENS

0 5 10 15
60

70

80

90

Number of Learners

P
re

ci
si

on
@

1

Wiki10 [L= 30K, d = 101K, n = 14K]

SLEEC
FastXML
LocalLEML−Ens

(a) (b) (c)
Figure 2: Variation in Precision@1 accuracy with model size and the number of learners on large-scale data
sets. Clearly, SLEEC achieves better accuracy than FastXML and LocalLEML-Ensemble at every point of the
curve. For WikiLSTHC, SLEEC with a single learner is more accurate than LocalLEML-Ensemble with even
15 learners. Similarly, SLEEC with 2 learners achieves more accuracy than FastXML with 50 learners.

Data sets: Experiments were carried out on multi-label data sets including Ads1M [15] (1M la-
bels), Amazon [23] (670K labels), WikiLSHTC (320K labels), DeliciousLarge [24] (200K labels)
and Wiki10 [25] (30K labels). All the data sets are publically available except Ads1M which is
proprietary and is included here to test the scaling capabilities of SLEEC.

Unfortunately, most of the existing embedding techniques do not scale to such large data sets. We
therefore also present comparisons on publically available small data sets such as BibTeX [26],
MediaMill [27], Delicious [28] and EURLex [29]. (Table 2 in the appendix lists their statistics).

Baseline algorithms: This paper’s primary focus is on comparing SLEEC to state-of-the-art meth-
ods which can scale to the large data sets such as embedding based LEML [9] and tree based
FastXML [15] and LPSR [2]. Naı̈ve Bayes was used as the base classifier in LPSR as was done
in [15]. Techniques such as CS [3], CPLST [30], ML-CSSP [7], 1-vs-All [31] could only be trained
on the small data sets given standard resources. Comparisons between SLEEC and such techniques
are therefore presented in the supplementary material. The implementation for LEML and FastXML
was provided by the authors. We implemented the remaining algorithms and ensured that the pub-
lished results could be reproduced and were verified by the authors wherever possible.

Hyper-parameters: Most of SLEEC’s hyper-parameters were kept fixed including the number of
clusters in a learner

(
bNTrain/6000c

)
, embedding dimension (100 for the small data sets and 50

for the large), number of learners in the ensemble (15), and the parameters used for optimizing (3).
The remaining two hyper-parameters, the k in kNN and the number of neighbours considered during
SVP, were both set by limited validation on a validation set.

The hyper-parameters for all the other algorithms were set using fine grained validation on each data
set so as to achieve the highest possible prediction accuracy for each method. In addition, all the
embedding methods were allowed a much larger embedding dimension (0.8L) than SLEEC (100)
to give them as much opportunity as possible to outperform SLEEC.

Evaluation Metrics: We evaluated algorithms using metrics that have been widely adopted for
XML and ranking tasks. Precision at k (P@k) is one such metric that counts the fraction of correct
predictions in the top k scoring labels in ŷ, and has been widely utilized [1, 3, 15, 13, 2, 9]. We
use the ranking measure nDCG@k as another evaluation metric. We refer the reader to the supple-
mentary material – Appendix B.1 and Tables 5 and 6 – for further descriptions of the metrics and
results.

Results on large data sets with more than 100K labels: Table 1a compares SLEEC’s prediction
accuracy, in terms of P@k (k= {1, 3, 5}), to all the leading methods that could be trained on five
such data sets. SLEEC could improve over the leading embedding method, LEML, by as much as
35% and 15% in terms of P@1 and P@5 on WikiLSHTC. Similarly, SLEEC outperformed LEML
by 27% and 22% in terms of P@1 and P@5 on the Amazon data set which also has many tail labels.
The gains on the other data sets are consistent, but smaller, as the tail label problem is not so acute.
SLEEC also outperforms the leading tree method, FastXML, by 6% in terms of both P@1 and P@5
on WikiLSHTC and Wiki10 respectively. This demonstrates the superiority of SLEEC’s overall
pipeline constructed using local distance preserving embeddings followed by kNN classification.

SLEEC also has better scaling properties as compared to all other embedding methods. In particular,
apart from LEML, no other embedding approach could scale to the large data sets and, even LEML
could not scale to Ads1M with a million labels. In contrast, a single SLEEC learner could be learnt
on WikiLSHTC in 4 hours on a single core and already gave ∼ 20% improvement in P@1 over
LEML (see Figure 2 for the variation in accuracy vs SLEEC learners). In fact, SLEEC’s training

7

Table 1: Precision Accuracies (a) Large-scale data sets : Our proposed method SLEEC is as much as 35%
more accurate in terms of P@1 and 22% in terms of P@5 than LEML, a leading embedding method. Other
embedding based methods do not scale to the large-scale data sets; we compare against them on small-scale
data sets in Table 3. SLEEC is also 6% more accurate (w.r.t. P@1 and P@5) than FastXML, a state-of-the-
art tree method. ‘-’ indicates LEML could not be run with the standard resources. (b) Small-scale data sets
: SLEEC consistently outperforms state of the art approaches. WSABIE, which also uses kNN classifier on
its embeddings is significantly less accurate than SLEEC on all the data sets, showing the superiority of our
embedding learning algorithm.

(a)

Data set SLEEC LEML FastXML LPSR-NB

Wiki10
P@1 85.54 73.50 82.56 72.71
P@3 73.59 62.38 66.67 58.51
P@5 63.10 54.30 56.70 49.40

Delicious-Large
P@1 47.03 40.30 42.81 18.59
P@3 41.67 37.76 38.76 15.43
P@5 38.88 36.66 36.34 14.07

WikiLSHTC
P@1 55.57 19.82 49.35 27.43
P@3 33.84 11.43 32.69 16.38
P@5 24.07 8.39 24.03 12.01

Amazon
P@1 35.05 8.13 33.36 28.65
P@3 31.25 6.83 29.30 24.88
P@5 28.56 6.03 26.12 22.37

Ads-1m
P@1 21.84 - 23.11 17.08
P@3 14.30 - 13.86 11.38
P@5 11.01 - 10.12 8.83

(b)

Data set SLEEC LEML FastXML WSABIE OneVsAll

BibTex
P@1 65.57 62.53 63.73 54.77 61.83
P@3 40.02 38.4 39.00 32.38 36.44
P@5 29.30 28.21 28.54 23.98 26.46

Delicious
P@1 68.42 65.66 69.44 64.12 65.01
P@3 61.83 60.54 63.62 58.13 58.90
P@5 56.80 56.08 59.10 53.64 53.26

MediaMill
P@1 87.09 84.00 84.24 81.29 83.57
P@3 72.44 67.19 67.39 64.74 65.50
P@5 58.45 52.80 53.14 49.82 48.57

EurLEX
P@1 80.17 61.28 68.69 70.87 74.96
P@3 65.39 48.66 57.73 56.62 62.92
P@5 53.75 39.91 48.00 46.2 53.42

time on WikiLSHTC was comparable to that of tree based FastXML. FastXML trains 50 trees in
7 hours on a single core to achieve a P@1 of 49.37% whereas SLEEC could achieve 49.98% by
training 2 learners in 8 hours. Similarly, SLEEC’s training time on Ads1M was 6 hours per learner
on a single core.

SLEEC’s predictions could also be up to 300 times faster than LEMLs. For instance, on Wik-
iLSHTC, SLEEC made predictions in 8 milliseconds per test point as compared to LEML’s 279.
SLEEC therefore brings the prediction time of embedding methods to be much closer to that of
tree based methods (FastXML took 0.5 milliseconds per test point on WikiLSHTC) and within the
acceptable limit of most real world applications.

Effect of clustering and multiple learners: As mentioned in the introduction, other embedding
methods could also be extended by clustering the data and then learning a local embedding in each
cluster. Ensembles could also be learnt from multiple such clusterings. We extend LEML in such
a fashion, and refer to it as LocalLEML, by using exactly the same 300 clusters per learner in the
ensemble as used in SLEEC for a fair comparison. As can be seen in Figure 2, SLEEC significantly
outperforms LocalLEML with a single SLEEC learner being much more accurate than an ensemble
of even 10 LocalLEML learners. Figure 2 also demonstrates that SLEEC’s ensemble can be much
more accurate at prediction as compared to the tree based FastXML ensemble (the same plot is
also presented in the appendix depicting the variation in accuracy with model size in RAM rather
than the number of learners in the ensemble). The figure also demonstrates that very few SLEEC
learners need to be trained before accuracy starts saturating. Finally, Table 4 shows that the variance
in SLEEC s prediction accuracy (w.r.t. different cluster initializations) is very small, indicating that
the method is stable even though clustering in more than a million dimensions.

Results on small data sets: Table 3, in the appendix, compares the performance of SLEEC to sev-
eral popular methods including embeddings, trees, kNN and 1-vs-All SVMs. Even though the tail
label problem is not acute on these data sets, and SLEEC was restricted to a single learner, SLEEC’s
predictions could be significantly more accurate than all the other methods (except on Delicious
where SLEEC was ranked second). For instance, SLEEC could outperform the closest competitor
on EurLex by 3% in terms of P1. Particularly noteworthy is the observation that SLEEC outper-
formed WSABIE [13], which performs kNN classification on linear embeddings, by as much as
10% on multiple data sets. This demonstrates the superiority of SLEEC’s local distance preserving
embeddings over the traditional low-rank embeddings.

Acknowledgments
We are grateful to Abhishek Kadian for helping with the experiments. Himanshu Jain is supported
by a Google India PhD Fellowship at IIT Delhi

8

References
[1] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions of labels: Recom-

mending advertiser bid phrases for web pages. In WWW, pages 13–24, 2013.
[2] J. Weston, A. Makadia, and H. Yee. Label partitioning for sublinear ranking. In ICML, 2013.
[3] D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In NIPS,

2009.
[4] M. Cissé, N. Usunier, T. Artières, and P. Gallinari. Robust bloom filters for large multilabel classification

tasks. In NIPS, pages 1851–1859, 2013.
[5] F. Tai and H.-T. Lin. Multi-label classification with principal label space transformation. In Workshop

proceedings of learning from multi-label data, 2010.
[6] K. Balasubramanian and G. Lebanon. The landmark selection method for multiple output prediction. In

ICML, 2012.
[7] W. Bi and J.T.-Y. Kwok. Efficient multi-label classification with many labels. In ICML, 2013.
[8] Y. Zhang and J. G. Schneider. Multi-label output codes using canonical correlation analysis. In AISTATS,

pages 873–882, 2011.
[9] H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale multi-label learning with missing labels. ICML,

2014.
[10] Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification.

In NIPS, pages 1538–1546, 2012.
[11] C.-S. Feng and H.-T. Lin. Multi-label classification with error-correcting codes. JMLR, 20, 2011.
[12] S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD, 2008.
[13] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In

IJCAI, 2011.
[14] Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classification via feature-aware implicit label space

encoding. In ICML, pages 325–333, 2014.
[15] Y. Prabhu and M. Varma. FastXML: a fast, accurate and stable tree-classifier for extreme multi-label

learning. In KDD, pages 263–272, 2014.
[16] Wikipedia dataset for the 4th large scale hierarchical text classification challenge, 2014.
[17] A. Ng and M. Jordan. On Discriminative vs. Generative classifiers: A comparison of logistic regression

and naive Bayes. In NIPS, 2002.
[18] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum

variance unfolding. In AAAI, pages 1683–1686, 2006.
[19] B. Shaw and T. Jebara. Minimum volume embedding. In AISTATS, pages 460–467, 2007.
[20] P. Jain, R. Meka, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In NIPS,

pages 937–945, 2010.
[21] P. Sprechmann, R. Litman, T. B. Yakar, A. Bronstein, and G. Sapiro. Efficient Supervised Sparse Analysis

and Synthesis Operators. In NIPS, 2013.
[22] P. Kar, K. B. Sriperumbudur, P. Jain, and H. Karnick. On the Generalization Ability of Online Learning

Algorithms for Pairwise Loss Functions. In ICML, 2013.
[23] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection, 2014.
[24] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing social bookmarking systems: A del.icio.us

cookbook. In Mining Social Data (MSoDa) Workshop Proceedings, ECAI, pages 26–30, July 2008.
[25] A. Zubiaga. Enhancing navigation on wikipedia with social tags, 2009.
[26] I. Katakis, G. Tsoumakas, and I. Vlahavas. Multilabel text classification for automated tag suggestion. In

Proceedings of the ECML/PKDD 2008 Discovery Challenge, 2008.
[27] C. Snoek, M. Worring, J. van Gemert, J.-M. Geusebroek, and A. Smeulders. The challenge problem for

automated detection of 101 semantic concepts in multimedia. In ACM Multimedia, 2006.
[28] G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and effcient multilabel classification in domains

with large number of labels. In ECML/PKDD, 2008.
[29] J. Mencı́a E. L.and Fürnkranz. Efficient pairwise multilabel classification for large-scale problems in the

legal domain. In ECML/PKDD, 2008.
[30] Y.-N. Chen and H.-T. Lin. Feature-aware label space dimension reduction for multi-label classification.

In NIPS, pages 1538–1546, 2012.
[31] B. Hariharan, S. V. N. Vishwanathan, and M. Varma. Efficient max-margin multi-label classification with

applications to zero-shot learning. ML, 2012.

9

A Generalization Error Analysis

To present our results, we first introduce some notation: for any embedding matrix A and dataset D,
let

L̂(A;D) :=
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(A; (xi,yi), (xj ,yj))

L̃(A;D) :=
1

n

n∑
i=1

E
(x,y)∼P

`(A; (x,y), (xi,yi))

L(A) := E
(x,y),(x̃,ỹ)∼P

`(A; (x,y), (x̃, ỹ))

We assume, without loss of generality that the data points are confined to a unit ball i.e. ‖x‖2 ≤ 1

for all x ∈ X . Also let Q = C ·
(
L̄(r + L̄)

)
where L̄ is the average number of labels active in a data

point, r = L̄
λ , λ and µ are the regularization constants used in (3), and C is a universal constant.

Theorem 1. Assume that all data points are confined to a ball of radius R i.e ‖x‖2 ≤ R for all
x ∈ X . Then with probability at least 1 − δ over the sampling of the data set D, the solution Â to
the optimization problem (3) satisfies,

L(Â) ≤ inf
A∗∈A

8

{
L(A∗) + C

(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

}
,

where r = L̄
λ , and C and C ′ are universal constants.

Proof. Our proof will proceed in the following steps. Let A∗ be the population minimizer of the
objective in the statement of the theorem.

1. Step 1 (Capacity bound): we will show that for some r, we have ‖Â‖F ≤ r

2. Step 2 (Uniform convergence): we will show that w.h.p., sup A∈A
‖A‖≤r

{
L(A)− L̂(A;D)

}
≤

O
(√

1
n log 1

δ

)
3. Step 3 (Point convergence): we will show that w.h.p., L̂(A∗;D)− L(A∗) ≤
O
(√

1
n log 1

δ

)
Having these results will allow us to prove the theorem in the following manner

L(Â) ≤ L̂(Â,D) + sup
A∈A
‖A‖≤r

{
L̂(A;D)− L(A)

}
≤ L̂(A∗,D) +O

(√
1

n
log

1

δ

)
≤ L(A∗) +O

(√
1

n
log

1

δ

)
,

where the second step follows from the fact that Â is the empirical risk minimizer.

We will now prove these individual steps as separate lemmata, where we will also reveal the exact
constants in these results.

Lemma 2 (Capacity bound). For the regularization parameters chosen for the loss function `(·),
the following holds for the minimizer Â of (3)

‖Â‖F ≤ Tr(A) ≤ 1

λ
L̄.

Proof. Since, Â minimizes (3), we have:

‖A‖F ≤ Tr(A) ≤ 1

λ

1

n(n− 1)

∑
ij

(〈yi,yj〉2 ≤
1

λ
max
ij
〈yi,yj〉 .

10

The above result shows that we can, for future analysis, restrict our hypothesis space to

Ã(r) :=
{
A ∈ A : ‖A‖2F ≤ r

2
}
,

where we set r = L̄
λ . This will be used to prove the following result.

Lemma 3 (Uniform convergence). With probability at least 1− δ over the choice of the data set D,
we have

L̂(Â;D)− L(Â) ≤ 6
(
rR2 + L̄

)2√ 1

2n
log

1

δ

Proof. For notional simplicity, we will denote a labeled sample as z = (x,y). Given any two points
z, z′ ∈ Z = X × Y and any A ∈ Ã(r), we will then write

`(A; z, z′) = g(〈y,y′〉)
(
〈y,y′〉 − xTAx′

)2
+ λTr(A),

so that, for the training set D = {z1, . . . , zn}, we have

L̂(A;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(A; zi, zj)

as well as

L(A) = E
z,z′∼P

`(A; z, z′).

Note that we ignore the ‖V x‖1 term in (3) completely because it is a regularization term and it won’t
increase the excess risk.

Suppose we draw a fresh data set D̃ = {z̃1, . . . , z̃n} ∼ P , then we have, by linearity of expectation,

E
D̃∼P
L̂(Â; D̃) =

1

n(n− 1)

n∑
i=1

∑
j 6=i

E
D̃∼P

`(A; z̃i, z̃j) = L(Â).

Now notice that for any A ∈ Ã, suppose we perturb the data set D at the ith location to get a
perturbed data set Di, then the following holds∣∣∣L̂(A;D)− L̂(A;Di)

∣∣∣ ≤ 4(L̄2 + r2R4)

n
.

which allows us to bound the excess risk as follows

L(Â)− L̂(Â;D) = E
D̃∼P
L̂(Â; D̃)− L̂(Â;D) ≤ sup

A∈Ã(r)

{
E
D̃∼P
L̂(A; D̃)− L̂(A;D)

}

≤ E
D∼P

supA∈Ã(r)

{
E
D̃∼P
L̂(A; D̃)− L̂(A;D)

}
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

≤ E
D,D̃∼P

supA∈Ã(r)

{
L̂(A; D̃)− L̂(A;D)

}
︸ ︷︷ ︸

Qn(Ã(r))

+4(L̄2 + r2R4)

√
1

2n
log

1

δ
,

where the third step follows from an application of McDiarmid’s inequality and the last step fol-
lows from Jensen’s inequality. We now bound the quantity Qn(Ã(r)) below. Let ¯̀(A, z, z′) :=

11

`(A, z, z′)− λ · Tr(A). Then we have

Qn(Ã(r)) = E
D,D̃∼P

supA∈Ã(r)

{
L̂(A; D̃)− L̂(A;D)

}
=

1

n(n− 1)
E

zi,z̃i∼P

u

v sup
A∈Ã(r)

n∑
i=1

∑
j 6=i

`(A; z̃i, z̃j)− `(A; zi, zj)

}

~

=
1

n(n− 1)
E

zi,z̃i∼P

u

v sup
A∈Ã(r)

n∑
i=1

∑
j 6=i

¯̀(A; z̃i, z̃j)− ¯̀(A; zi, zj)

}

~

≤ 2

n
E

zi,z̃i

u

v sup
A∈Ã(r)

n/2∑
i=1

¯̀(A; z̃i, z̃n/2+i)− ¯̀(A; zi, zn/2+i)

}

~

≤ 2 · 2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εi ¯̀(A; zi, zn/2+i)

}

~

︸ ︷︷ ︸
Rn(`◦Ã(r))

= 2 · Rn/2(` ◦ Ã(r))

where the last step uses a standard symmetrization argument with the introduction of the
Rademacher variables εi ∼ −1,+1. The second step presents a stumbling block in the analysis
since the interaction between the pairs of the points means that traditional symmetrization can no
longer done. Previous works analyzing such “pairwise” loss functions face similar problems [22].
Consequently, this step uses a powerful alternate representation for U-statistics to simplify the ex-
pression. This technique is attributed to Serfling. This, along with the Hoeffding decomposition,
are two of the most powerful techniques to deal with “coupled” random variables as we have in this
situation.

Theorem 4. For any set of real valued functions qτ : X ×X → R indexed by τ ∈ T , if X1, . . . , Xn

are i.i.d. random variables then we have

E

u

vsup
τ∈T

2

n(n− 1)

∑
1≤i<j≤n

qτ (Xi, Xj)

}

~ ≤ E

u

vsup
τ∈T

2

n

n/2∑
i=1

qτ (Xi, Xn/2+i)

}

~

Applying this decoupling result to the random variables Xi = (z̃i, zi), the index set Ã(r) and
functions qA(Xi, Xj) = `(A; z̃i, z̃j)− `(A; zi, zj) = ¯̀(A; z̃i, z̃j)− ¯̀(A; zi, zj) gives us the second
step. We now concentrate on bounding the resulting Rademacher average term Rn(` ◦ Ã(r)). We
have

Rn/2(` ◦ Ã(r)) =
2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εi ¯̀(A; zi, zn/2+i)

}

~

=
2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(〈
yi,yn/2+i

〉
− xTi Axn/2+i

)2
}

~ .

12

That is,

Rn/2(` ◦ Ã(r)) ≤ 2

n
E
zi,εi

u

v
n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉2}~
︸ ︷︷ ︸

(A)

+
2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(
xTi Axn/2+i

)2
}

~

︸ ︷︷ ︸
Bn(`◦Ã(r))

+
4

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉 (
xTi Axn/2+i

)
}

~

︸ ︷︷ ︸
Cn(`◦Ã(r))

Now since the random variables εi are zero mean and independent of zi, we have E
εi|zi,zn/2+i

εi = 0

which we can use to show that E
εi|zi,zn/2+i

r
εig(

〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉2z
= 0 which gives us,

by linearity of expectation, (A) = 0. To bound the next two terms we use the following standard
contraction inequality:

Theorem 5. Let H be a set of bounded real valued functions from some domain X and let
x1, . . . ,xn be arbitrary elements from X . Furthermore, let φi : R → R, i = 1, . . . , n be L-
Lipschitz functions such that φi(0) = 0 for all i. Then we have

E

t

sup
h∈H

1

n

n∑
i=1

εiφi(h(xi))

|

≤ LE

t

sup
h∈H

1

n

n∑
i=1

εih(xi)

|

.

Now define
φi(w) = g(

〈
yi,yn/2+i

〉
)w2

Clearly φi(0) = 0 and 0 ≤ g(
〈
yi,yn/2+i

〉
) ≤ 1. Moreover, in our case w = xTAx′ for some

A ∈ Ã(r) and ‖x‖ , ‖x′‖ ≤ R. Thus, the function φi(·) is rR2-Lipschitz. Note that here we exploit
the fact that the contraction inequality is actually proven for the empirical Rademacher averages due
to which we can take g(

〈
yi,yn/2+i

〉
) to be a constant dependent only on i. This allows us to bound

the term Bn(` ◦ Ã(r)) as follows

Bn(` ◦ Ã(r)) =
2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
(
xTi Axn/2+i

)2
}

~

≤ rR2 · 2

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εi
(
xTi Axn/2+i

)
}

~

︸ ︷︷ ︸
Rn/2(Ã(r))

≤ rR2 · Rn/2(Ã(r)).

Similarly, we can show that

Cn(` ◦ Ã(r)) =
4

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εig(
〈
yi,yn/2+i

〉
)
〈
yi,yn/2+i

〉 (
xTi Axn/2+i

)
}

~

≤ 4L̄

n
E
zi,εi

u

v sup
A∈Ã(r)

n/2∑
i=1

εi
(
xTi Axn/2+i

)
}

~

≤ 2L̄ · Rn/2(Ã(r)).

13

Thus, we have
Rn/2(` ◦ Ã(r)) ≤

(
rR2 + 2L̄

)
· Rn/2(Ã(r))

Now all that remains to be done is bound Rn(` ◦ Ã(r)). This can be done by invoking standard
bounds on Rademacher averages for regularized function classes. In particular, using the two stage
proof technique outlined in [22], we can show that

Rn/2(Ã(r)) ≤ rR2

√
2

n

Putting it all together gives us the following bound: with probability at least 1− δ, we have

L(Â)− L̂(Â;D) ≤ 2(rR2 + 2L̄)rR2

√
2

n
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

as claimed

The final part shows pointwise convergence for the population risk minimizer.

Lemma 6 (Point convergence). With probability at least 1− δ over the choice of the data set D, we
have

L̂(A∗;D)− L(A∗) ≤ 4(L̄2 + ‖A∗‖2FR4)

√
1

2n
log

1

δ
,

where A∗ is the population minimizer of the objective in the theorem statement.

Proof. We note that, as before
E
D∼P
L̂(A∗,D) = L(A∗)

Let D be a realization of the sample and Di be a perturbed data set where the ith data point is
arbitrarily perturbed. Then we have∣∣∣L̂(A∗;D)− L̂(A∗;Di)

∣∣∣ ≤ 4
(
L̄2 + ‖A∗‖2FR4

)
n

.

Thus, an application of McDiarmid’s inequality shows us that with probability at least 1 − δ, we
have

L̂(A∗;D)− L(A∗) = L̂(A∗;D)− E
D∼P
L̂(A∗;D) ≤ 4

(
L̄2 + ‖A∗‖2FR4

)√ 1

2n
log

1

δ
,

which proves the claim.

Putting the three lemmata together as shown above concludes the proof of the theorem.

Although the above result ensures that the embedding provided by Â would preserve neighbors over
the population, in practice, we are more interested in preserving the neighbors of test points among
the training points, as they are used to predict the label vector. The following extension of our result
shows that Â indeed accomplishes this as well.
Theorem 7. Assume that all data points are confined to a ball of radius R i.e ‖x‖2 ≤ R for all
x ∈ X . Then with probability at least 1 − δ over the sampling of the data set D, the solution Â to
the optimization problem (3) ensures that,

L̃(Â;D) ≤ inf
A∗∈A

{
L̃(A∗;D) + C

(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

}
,

where r = L̄
λ , and C is a universal constant.

Note that the loss function L̃(A;D) exactly captures the notion of how well an embedding matrix A
can preserve the neighbors of an unseen point among the training points.

14

Proof. We first recall and rewrite the form of the loss function considered here. For any data set
D = {z1, . . . , zn}. For any A ∈ A and z ∈ Z, let ℘(A; z) := E

z′∼P
`(A; z, z′). This allows us to

write

L̃(A;D) :=
1

n

n∑
i=1

E
z∼P

`(A; z, zi) =
1

n

n∑
i=1

℘(A; zi)

Also note that for any fixed A, we have

E
D∼P
L̃(A;D) = L(A).

Now, given a perturbed data set Di, we have∣∣∣L̃(A;D)− L̃(A;Di)
∣∣∣ ≤ 4(L̄2 + r2R4)

n
,

as before. Since this problem does not have to take care of pairwise interactions between the data
points (since the “other” data point is being taken expectations over), using standard Rademacher
style analysis gives us, with probability at least 1− δ,

L̃(Â;D)− L(Â) ≤ 2
(
rR2 + 2L̄

)
rR2

√
2

n
+ 4(L̄2 + r2R4)

√
1

2n
log

1

δ

A similar analysis also gives us with the same confidence

L(A∗)− L̂(A∗;D) ≤ 4(L̄2 + ‖A∗‖2FR4)

√
1

2n
log

1

δ

However, an argument similar to that used in the proof of Theorem 1 shows us that

L(Â) ≤ L(A∗) + C
(
L̄2 +

(
r2 + ‖A∗‖2F

)
R4
)√ 1

n
log

1

δ

Combining the above inequalities yields the desired result.

15

B Experiments

In this section we present detailed experimental results, as well as descriptions of evaluation metrics
that could not be included in the main text due to lack of space.

B.1 Evaluation Metrics

We used two metrics to evaluate algorithms in our experiments. Both have been widely adopted in
several XML and ranking tasks.

Precision @ k: this metric has been widely adopted as the metric of choice for evaluating XML
algorithms and is motivated by real world application scenarios such as tagging and recommendation
where only accuracy at the top of the ranked/recommendation list matters. Formally, the precision
at k for a predicted score vector ŷ ∈ RL is the fraction of correct positive predictions in the top k
scores of ŷ. We sort the labels according to the scores assigned to them by ŷ and then count the
number of positive predictions in the top k positions in this ranked list.

nDCG Evaluation Metric: Let Sn denote the symmetric group of the set of all permutations of
{1, 2, . . . , L}. Given a ground truth label vector y ∈ {0, 1}L, we can definte, for any permutation
σ ∈ SL, the Discounted Cumulative Gain (DCG) at k of σ as

DCG@k(σ,y) :=

k∑
l=1

yσ(l)

log(l + 1)

The normalized version of this metric simply divides this by the largest possible DCG@k value over
all permutations.

nDCG@k(σ,y) := Ik(y) ·
k∑
l=1

yσ(l)

log(l + 1)
,

where

Ik(y) :=

min(k,‖y‖0)∑
l=1

1

1 + l

−1

,

where ‖y‖0 simply counts the number of active labels in the ground truth vector y. Given this,
we can now define the nDCG@k loss for score vectors over labels as well. For any score vector
ŷ ∈ RL, let σŷ ∈ SL denote the corresponding permutation induced on the labels by sorting them
in descending order of the scores. Then we define

nDCG@k(ŷ,y) := nDCG@k(σŷ,y).

B.2 Supplementary Results

Table 2: Data set Statistics: n and m are the number of training and test points respectively, d and L
are the number of features and labels, respectively, and d̄ and L̄ are the average number of nonzero
features and positive labels in an instance, respectively.

Data set d L n m d̄ L̄

MediaMill 120 101 30993 12914 120.00 4.38
BibTeX 1836 159 4880 2515 68.74 2.40
Delicious 500 983 12920 3185 18.17 19.03
EURLex 5000 3993 15539 3809 236.69 5.31
Wiki10 101938 30938 14146 6616 673.45 18.64
DeliciousLarge 782585 205443 196606 100095 301.17 75.54
WikiLSHTC 1617899 325056 1778351 587084 42.15 3.19
Amazon 135909 670091 490449 153025 75.68 5.45
Ads1M 164592 1082898 3917928 1563137 9.01 1.96

16

Table 3: Results on Small Scale data sets : Comparison of precision accuracies of SLEEC with competing
baseline methods on small scale data sets. The results reported are average precision values along with standard
deviations over 10 random train-test split for each Data set. SLEEC outperforms all baseline methods on all
data sets (except Delicious, where it is ranked 2nd after FastXML)

Data set Proposed Embedding Tree Based Other

SLEEC LEML WSABIE CPLST CS ML-CSSP FastXML-1 FastXML LPSR OneVsAll KNN

Bibtex
P@1 65.57 ±0.65 62.53±0.69 54.77±0.68 62.38 ±0.42 58.87 ±0.64 44.98 ±0.08 37.62 ±0.91 63.73±0.67 62.09±0.73 61.83 ±0.77 57.00 ±0.85
P@3 40.02 ±0.39 38.40 ±0.47 32.38 ±0.26 37.83 ±0.52 33.53 ±0.44 30.42 ±2.37 24.62 ±0.68 39.00 ±0.57 36.69 ±0.49 36.44 ±0.38 36.32 ±0.47
P@5 29.30 ±0.32 28.21 ±0.29 23.98 ±0.18 27.62 ±0.28 23.72 ±0.28 23.53 ±1.21 21.92 ±0.65 28.54 ±0.38 26.58 ±0.38 26.46 ±0.26 28.12 ±0.39

Delicious
P@1 68.42 ±0.53 65.66 ±0.97 64.12 ±0.77 65.31 ±0.79 61.35 ±0.77 63.03 ±1.10 55.34 ±0.92 69.44 ±0.58 65.00±0.77 65.01 ±0.73 64.95 ±0.68
P@3 61.83 ±0.59 60.54 ±0.44 58.13 ±0.58 59.84 ±0.5 56.45 ±0.62 56.26 ±1.18 50.69 ±0.58 63.62 ±0.75 58.97 ±0.65 58.90 ±0.60 58.90 ±0.70
P@5 56.80 ±0.54 56.08 ±0.56 53.64 ±0.55 55.31 ±0.52 52.06 ±0.58 50.15 ±1.57 45.99 ±0.37 59.10 ±0.65 53.46 ±0.46 53.26 ±0.57 54.12 ±0.57

MediaMill
P@1 87.09 ±0.33 84.00±0.30 81.29 ±1.70 83.34 ±0.45 83.82 ±0.36 78.94 ±10.1 61.14±0.49 84.24 ±0.27 83.57 ±0.26 83.57 ±0.25 83.46 ±0.19
P@3 72.44 ±0.30 67.19 ±0.29 64.74 ±0.67 66.17 ±0.39 67.31 ±0.17 60.93 ±8.5 53.37 ±0.30 67.39 ±0.20 65.78 ±0.22 65.50 ±0.23 67.91 ±0.23
P@5 58.45 ±0.34 52.80 ±0.17 49.82 ±0.71 51.45 ±0.37 52.80 ±0.18 44.27 ±4.8 48.39 ±0.19 53.14 ±0.18 49.97 ±0.48 48.57 ±0.56 54.24 ±0.21

EurLEX
P@1 80.17 ±0.86 61.28±1.33 70.87 ±1.11 69.93±0.90 60.18 ±1.70 56.84±1.5 49.18 ±0.55 68.69 ±1.63 73.01 ±1.4 74.96 ±1.04 77.2 ±0.79
P@3 65.39 ±0.88 48.66 ±0.74 56.62 ±0.67 56.18 ±0.66 48.01 ±1.90 45.4 ±0.94 42.72 ±0.51 57.73 ±1.58 60.36 ±0.56 62.92 ±0.53 61.46 ±0.96
P@5 53.75 ±0.80 39.91 ±0.68 46.20 ±0.55 45.74 ±0.42 38.46 ±1.48 35.84 ±0.74 37.35 ±0.42 48.00 ±1.40 50.46 ±0.50 53.42 ±0.37 50.45 ±0.64

Table 4: Stability of SLEEC learners. We show mean precision values over 10 runs of SLEEC on WikiLSHTC
with varying number of learners. Each individual learner as well as ensemble of SLEEC learners was found to
be extremely stable with with standard deviation ranging from 0.16% on P1 to 0.11% on P5.

Learners 1 2 3 4 5 6 7 8 9 10

P@1 46.04 ±0.1659 50.04 ±0.0662 51.65 ±0.074 52.62 ±0.0878 53.28 ±0.0379 53.63 ±0.083 54.03 ±0.0757 54.28 ±0.0699 54.44 ±0.048 54.69 ±0.035
P@3 26.15 ±0.1359 29.32 ±0.0638 30.70 ±0.052 31.55 ±0.067 32.14 ±0.0351 32.48 ±0.0728 32.82 ±0.0694 33.07 ±0.0503 33.24 ±0.023 33.45 ±0.0127
P@5 18.14 ±0.1045 20.58 ±0.0517 21.68 ±0.0398 22.36 ±0.0501 22.85 ±0.0179 23.12 ±0.0525 23.4 ±0.0531 23.60 ±0.0369 23.74 ±0.0172 23.92 ±0.0115

Table 5: nDCG Large-scale data sets : Our proposed method SLEEC is as much as 35% more accurate in terms
of nDCG@1 and 33% in terms of nDCG@5 than LEML, a leading embedding method. Other embedding
based methods do not scale to the large-scale data sets; SLEEC is also 5% more accurate (w.r.t. nDCG@1
and nDCG@5) than FastXML, a state-of-the-art tree method. ‘-’ indicates LEML could not be run with the
standard resources.

Data set SLEEC LEML FastXML LPSR-NB

Wiki10
nDCG@1 86.14 73.47 81.71 72.72
nDCG@3 76.11 64.92 69.12 61.71
nDCG@5 68.15 58.69 61.46 54.63

Delicious-Large
nDCG1 47.53 40.73 43.34 18.59
nDCG3 43.33 38.44 39.78 16.17
nDCG5 41.19 37.01 37.80 15.13

WikiLSHTC
nDCG@1 54.81 19.82 49.37 27.43
nDCG@3 47.23 14.52 44.89 23.04
nDCG@5 46.14 13.73 44.43 22.54

Amazon
nDCG@1 34.77 8.13 34.24 28.65
nDCG@3 32.74 7.30 32.09 26.40
nDCG@5 31.53 6.85 30.48 25.03

Ads-1m
nDCG@1 21.75 - 23.31 17.95
nDCG@3 23.67 - 24.06 19.50
nDCG@5 25.06 - 24.71 20.65

0 5 10 15
0

10

20

30

Model Size (GB)

P
re

ci
si

on
@

1

Ads−1m [L = 1.08M, d = 164K, n = 3.91M]

SLEEC
FastXML

0 5 10 15 20
0

5

10

15

Model Size (GB)

P
re

ci
si

on
@

3

Ads−1m [L = 1.08M, d = 164K, n = 3.91M]

SLEEC
FastXML

0 5 10 15 20
0

5

10

15

Model Size (GB)

P
re

ci
si

on
@

5

Ads−1m [L = 1.08M, d = 164K, n = 3.91M]

SLEEC
FastXML

(a) (b) (c)

Figure 3: Variation of precision accuracy with model size on Ads-1m Data set

17

Table 6: nDCG Results on Small Scale data sets : Comparison of normalized Discounted Cumulative Gain
(nDCG) performance of SLEEC with competing baseline methods on small scale data sets. SLEEC outper-
forms all baseline methods on all data sets (except Delicious, where it is ranked 2nd after FastXML)

Data set Proposed Embedding Tree Based Other

SLEEC LEML WSABIE CPLST CS ML-CSSP FastXML-1 FastXML LPSR OneVsAll KNN

Bibtex
nDCG@1 64.49 63.10 55.03 61.99 59.60 56.86 46.04 63.78 62.98 62.62 57.81
nDCG@3 59.90 58.84 50.26 57.66 53.08 52.54 40.55 59.73 57.11 59.44 52.36
nDCG@5 62.29 61.06 52.33 59.71 53.74 54.81 40.73 61.72 58.76 61.73 54.57

Delicious
nDCG@1 67.41 64.96 63.67 65.65 61.26 63.96 57.30 69.92 64.46 64.9 64.8
nDCG@3 62.46 61.80 59.47 61.52 57.85 59.07 52.97 65.91 60.47 60.94 60.71
nDCG@5 59.02 58.42 56.37 58.00 54.44 54.86 49.89 62.20 56.19 56.54 57.02

MediaMill
nDCG@1 86.61 83.99 79.86 83.79 83.97 83.21 82.11 83.73 83.65 83.67 82.59
nDCG@3 80.04 75.23 72.51 74.44 75.29 72.67 73.21 74.84 74.12 73.90 75.62
nDCG@5 77.71 71.96 69.34 70.49 71.99 65.05 69.94 71.66 69.12 67.75 72.76

EurLEX
nDCG@1 79.86 61.64 68.54 70.17 58.51 69.04 47.18 70.75 74.29 75.97 77.00
nDCG@3 67.96 52.70 58.43 59.64 48.66 55.95 40.77 61.41 64.93 67.28 65.61
nDCG@5 61.59 47.75 53.02 53.79 40.79 48.17 36.09 56.05 59.43 62.54 59.39

0 2 4 6 8
10

20

30

40

Model Size (GB)

P
re

ci
si

on
@

1

Amazon [L = 670K, d = 136K, n = 490K]

SLEEC
FastXML

0 2 4 6 8
10

20

30

40

Model Size (GB)

P
re

ci
si

on
@

3
Amazon [L = 670K, d = 136K, n = 490K]

SLEEC
FastXML

0 2 4 6 8
10

20

30

Model Size (GB)

P
re

ci
si

on
@

5

Amazon [L = 670K, d = 136K, n = 490K]

SLEEC
FastXML

(a) (b) (c)

Figure 4: Variation of precision accuracy with model size on Amazon Data set

0 2 4 6
30

40

50

Model Size (GB)

P
re

ci
si

on
@

1

Delicious−Large [L=205K, d=782K, n=196K]

SLEEC
FastXML
LocalLEML−Ens

0 2 4 6
20

30

40

Model Size (GB)

P
re

ci
si

on
@

3

Delicious−Large [L=205K, d=782K, n=196K]

SLEEC
FastXML
LocalLEML−Ens

0 2 4 6
20

30

40

Model Size (GB)

P
re

ci
si

on
@

5

Delicious−Large [L=205K, d=782K, n=196K]

SLEEC
FastXML
LocalLEML−Ens

(a) (b) (c)

Figure 5: Variation of precision accuracy with model size on Delicious-Large Data set

0 0.2 0.4 0.6
60

70

80

90

Model Size (GB)

P
re

ci
si

on
@

1

Wiki10 [L= 30K, d = 101K, n = 14K]

SLEEC
FastXML
LocalLEML−Ens

0 0.2 0.4 0.6
50

60

70

80

Model Size (GB)

P
re

ci
si

on
@

3

Wiki10 [L= 30K, d = 101K, n = 14K]

SLEEC
FastXML
LocalLEML−Ens

0 0.2 0.4 0.6
40

50

60

70

Model Size (GB)

P
re

ci
si

on
@

5

Wiki10 [L= 30K, d = 101K, n = 14K]

SLEEC
FastXML
LocalLEML−Ens

(a) (b) (c)

Figure 6: Variation of precision accuracy with model size on Wiki10 Data set

0 5 10
30

40

50

60

Model Size (GB)

P
re

ci
si

on
@

1

WikiLSHTC [L= 325K, d = 1.61M, n = 1.77M]

SLEEC
FastXML
LocalLEML−Ens

0 5 10
10

20

30

40

Model Size (GB)

P
re

ci
si

on
@

3

WikiLSHTC [L= 325K, d = 1.61M, n = 1.77M]

SLEEC
FastXML
LocalLEML−Ens

0 5 10
10

15

20

25

Model Size (GB)

P
re

ci
si

on
@

5

WikiLSHTC [L= 325K, d = 1.61M, n = 1.77M]

SLEEC
FastXML
LocalLEML−Ens

(a) (b) (c)

Figure 7: Variation of precision accuracy with model size on WikiLSHTC Data set

18

	Introduction
	Method
	Learning Embeddings
	Scaling to Large-scale Data sets

	Experiments
	Generalization Error Analysis
	Experiments
	Evaluation Metrics
	Supplementary Results

